6 research outputs found

    Linguistik im geteilten Deutschland

    Get PDF
    Der Aufsatz skizziert die Linguistik – mit Schwerpunkt auf der germanistischen Linguistik – in ihren wichtigsten theoretischen Richtungen in Deutschland zur Zeit der Teilung (1945-1989, teilweise auch darüber hinaus). Dabei wird auch auf Entwicklungen im internationalen Maßstab eingegangen, die ihren Ursprung bereits im 19. Jhd. haben. Behandelt werden vor allem Strukturalismus und Generative Grammatik, aber auch die Valenztheorie (im Rahmen der Dependenz- und der Konstituenzgrammatik), Sprechakttheorie und kommunikativ-pragmatische Linguistik. Wegen der Fülle der zu besprechenden Werke und Autoren konzentrieren sich die Verfasser auf möglichst repräsentative Beispiele.The article gives an overview of the most important theoretical approaches in linguistics – concentrating on linguistics of German – during the period of the division of Germany into two states (1945-1989 and after). The global development of linguistics (from the 19th century up to now) is taken into account. The description comprises structuralism and generative grammar as well as valency theory (within the framework of dependency and constituent grammar) as well as speech act theory and communicative pragmatic linguistics. Because of the wealth of authors and works pertinent to this period, emphasis is put on the most representative examples.Artykuł dotyczy lingwistyki – głównie lingwistyki germanistycznej – i jej najważniejszych kierunków teoretycznych w czasach podziału Niemiec (1945-1989, częściowo nawet lat późniejszych). Uwzględniony został również rozwój lingwistyki w skali międzynarodowej, którego początek przypada na wiek dziewiętnasty. Omówione zostały przede wszystkim strukturalizm i gramatyka generatywna, także teoria walencji (w ramach gramatyki dependencyjnej i gramatyki składników bezpośrednich), teoria aktów mowy oraz lingwistyka komunikatywno-pragmatyczna. Ze względu na dużą ilość prac dotyczących tematu, autorzy niniejszego artykułu koncentrują się na możliwie reprezentatywnych przykładach

    Quantitative protein sensing with germanium THz-antennas manufactured using CMOS processes

    Get PDF
    The development of a CMOS manufactured THz sensing platform could enable the integration of state-of-the-art sensing principles with the mixed signal electronics ecosystem in small footprint, low-cost devices. To this aim, in this work we demonstrate a label-free protein sensing platform using highly doped germanium plasmonic antennas realized on Si and SOI substrates and operating in the THz range of the electromagnetic spectrum. The antenna response to different concentrations of BSA shows in both cases a linear response with saturation above 20 mg/mL. Ge antennas on SOI substrates feature a two-fold sensitivity as compared to conventional Si substrates, reaching a value of 6 GHz/(mg/mL), which is four-fold what reported using metal-based metamaterials. We believe that this result could pave the way to a low-cost lab-on-a-chip biosensing platform

    Terahertz subwavelength sensing with bio-functionalized germanium fano-resonators

    No full text
    Localized Surface Plasmon Resonances (LSPR) based on highly doped semiconductors microstructures, such as antennas, can be engineered to exhibit resonant features at THz frequencies. In this work, we demonstrate plasmonic antennas with increased quality factor LSPRs from Fano coupling to dark modes. We also discuss the advances in the biofunctionalization of n-doped Ge antennas for specific protein immobilization and cell interfacing. Finally, albumin biolayers with a thickness of a few hundred nanometers are used to demonstrate the performance of the fano-coupled n-Ge antennas as sensors. A resonant change of over 10% in transmission, due to the presence of the biolayer, can be detected within a bandwidth of only 20 GHz

    Three-Dimensional Interfacing of Cells with Hierarchical Silicon Nano/Microstructures for Midinfrared Interrogation of In Situ Captured Proteins

    No full text
    Label-free optical detection of biomolecules is currently limited by a lack of specificity rather than sensitivity. To exploit the much more characteristic refractive index dispersion in the mid-infrared (IR) regime, we have engineered three-dimensional IR-resonant silicon micropillar arrays (Si-MPAs) for protein sensing. By exploiting the unique hierarchical nano- and microstructured design of these Si-MPAs attained by CMOS-compatible silicon-based microfabrication processes, we achieved an optimized interrogation of surface protein binding. Based on spatially resolved surface functionalization, we demonstrate controlled three-dimensional interfacing of mammalian cells with Si-MPAs. Spatially controlled surface functionalization for site-specific protein immobilization enabled efficient targeting of soluble and membrane proteins into sensing hotspots directly from cells cultured on Si-MPAs. Protein binding to Si-MPA hotspots at submonolayer level was unambiguously detected by conventional Fourier transform IR spectroscopy. The compatibility with cost-effective CMOS-based microfabrication techniques readily allows integration of this novel IR transducer into fully fledged bioanalytical microdevices for selective and sensitive protein sensing

    Quantitative protein sensing with germanium THz-antennas manufactured using CMOS processes

    Get PDF
    The development of a CMOS manufactured THz sensing platform could enable the integration of state-of-the-art sensing principles with the mixed signal electronics ecosystem in small footprint, low-cost devices. To this aim, in this work we demonstrate a label-free protein sensing platform using highly doped germanium plasmonic antennas realized on Si and SOI substrates and operating in the THz range of the electromagnetic spectrum. The antenna response to different concentrations of BSA shows in both cases a linear response with saturation above 20 mg/mL. Ge antennas on SOI substrates feature a two-fold sensitivity as compared to conventional Si substrates, reaching a value of 6 GHz/(mg/mL), which is four-fold what reported using metal-based metamaterials. We believe that this result could pave the way to a low-cost lab-on-a-chip biosensing platform
    corecore